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/OUTLINE b

1. Simplistic explanation of infragravity (IG) waves and generation mechanisms,
2. Discussion of numerical modeling results from SW France coastline, and
3. Applicability to Florida’s Atlantic coastline.
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WHAT ARE INFRAGRAVITY (IG) WAVES?
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https://en.wikipedia.org/wiki/Infragravity _wave



Infragravity Waves:
~30 seconds to 5 minutes
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WHY DO WE CARE ABOUT IG WAVES?

= Sediment transport

IG WAVE INFLUENCES * Runup/overwash
NEARSHORE .
HYDRODYNAMICS AND Rip currents

MORPHOLOGY = Reef hydrodynamics

= Harbor resonance




|G WAVE GENERATION MECHANISMS

" Bound wave theory
= Longuet-Higgins and Stewart — 1962

" Moving breakpoint theory
= Symonds et al. — 1982

" Bore merging theory
= Huntley and Bowen —1974
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BOUND IG WAVE THEORY
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Replicated from: Bertin, X., et al., 2018. Infragravity waves: from driving mechanisms to impacts. Earth. Rev. 177, 774-799.




BOUND IG WAVE THEORY

Waves groups create |G waves!

Bigger group waves produce bigger IG waves
at shoreline, up to a limit

Note: small IG wave amplitude in open ocean
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BOUND IG WAVE THEORY

Considered dominant mechanism
on mild-slope beaches, like Florida’s coast
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AS BOUND IG WAVES APPROACH SHORELINE,

= |G waves shoal

= |ncrease in energy

= They feel the bottom before sea/swell waves, resulting in
decrease in speed

= The IG waves begin to lag behind the wave groups,
eventually becoming FREE (unbound) IG waves
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AT THE SHORELINE, IG WAVES

Energy is partially dissipated by sea/swell wave breaking
Are reflected off the shoreline back out to sea

Become refractively trapped to become edge or standing
waves

Temporarily elevate sea level, increasing runup

(and potentially erosion) on shoreline
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1. Simplistic explanation of infragravity (IG) waves and generation mechanisms,
2. Discussion of numerical modeling results from SW France coastline, and
3. Applicability to Florida’s Atlantic coastline.
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GRID BATHYMETRY

Notable bathymetric features

= Relic sand disposal site
= Offshore rock
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Hs=3.5 m, Tp=15.1 s, Dp=315*

INPUT SPECTRA

Typical storm conditions
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BOUSSINESQ OCEAN & SURF ZONE (BOSZ)

Phase-resolving model designed for the nearshore environment
Depth-integrated

Boussinesq equations in conserved form to handle shocks and
irregular bathymetry

Includes nonlinear interaction of wave quadruplets and triads
which create |G waves, unlike phase-averaged models
Refraction, reflection, diffraction, shoaling, wave breaking
Secondary wave processes like setup and recirculation

BOSZ well suited for this modeling study




MODEL RUNS

= Tested influence of water level, wave direction, and storm intensity
on |G wave variability along the coastline

=" Note: model not validated with field data, outside scope of study
=" More interested in qualitative trends than quantitative results

mm Tp (s) m Water Level (m) mm Tp (s) m Water Level (m)

14.5 +2.5 (MSL) —— +2.5 (MSL)
5 3.1 145 295 +2.5 (MSL)
2 3.1 145 310 +0.5 (MLW) (south)
3 3.1 145 310 +4.5 (MHW) & &l 145 325 +2.5 (MSL)
(north)
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BOSZ model outputs water surface

" Power Spectral Density analysis

= |G energy flux/dissipation

= Cross-correlation between sea-swell
wave envelope and IG free surface

= Swash

ANALYSES
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BOSZ model outputs water surface
" Power Spectral Density analysis
= |G energy flux/dissipation
-correlation between sea-swell
wave envelope and IG free surface

ANALYSES

= Swash
= Cross
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POWER SPECTRAL DENSITY

Measure of wave energy vs. frequency

= \Welch Method

= 750 s (12.5 minute) Hanning window (250
points)

= 50% overlap
= Averaging 5 segments
= Equivalent degrees of freedom not computed

= Little change between -20 m and -10 m

= Large decrease between-10 mand -1 m
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PSD(f) = £13 E(f)
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PSD(f) = X} E(f)
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SIGNIFICANT SWASH HEIGHTS (S;)

= Algorithm considers swash to be
runup of 1 mm depth
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WATER LEVEL VARIATION

= \ariations in water level appear to
typically change Hy s by 4 - 8 in
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" Low tide decreases H ; everywhere

except between -30 and -15 ft 2800 2800 -
contours, due to wave breaking
further away from shore 2400 2400 o

= High tide increases Hg ; nearly
everywhere at shoreline, Hy ,; wave
breaking = less dissipation
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WAVE DIRECTION VARIATION

= Change in direction causes minimal
change in offshore H ; heights (O -

3600 0.4 3600 0.4

4 in) 3200 0.3 3200 0.3
= Translation in IG hotspots approx. 1 2600 d02 | 2800 202

km to the south (left fig.) and north

(rlght flg) 2400 = 0.1 2400 = 0.1

= Disposal site less (more) effective at
wave focusing at more northerly
(southerly) direction
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STUDY CONCLUSIONS

Offshore bathymetry highly influences |G energy hotspots

Water level influence — IG wave heights increase during high tide, decrease
during low tide

Wave direction influence — wave direction changes IG wave heights by
typically 0-4 in

|G waves (and swash heights) more sensitive to changes in water level than
wave direction

Storm intensity influence — decrease in storm intensity decreases |G wave
heights everywhere, but disproportionately at wave break zone and wave

focusing features
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/OUTLINE b

1. Simplistic explanation of infragravity (IG) waves and generation mechanisms,
2. Discussion of numerical modeling results from SW France coastline, and

3. Applicability to Florida’s Atlantic coastline.
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INFRAGRAVITY WAVES IN FLORIDA

= Little IG research in 2w

Florida "\“6404

= Generally low IG wave
6407

energy 4
" Following locations are £ \
selected for illustration
= Mayport
= Bathtub Beach Park
= Delray Beach

10 15 20 25 30 35 40

mean Hig (mm)
Modeled, mean IG wave heights during winter 2008.
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MAYPORT, DUVAL COUNTY

Offshore wave

. ATLANTIC BEACH HANNA PARK MAYPORT N.A S,
focusing “THE POLES"
= Higher wave $
heights at B
shoreline likely 3

cause higher IG
wave heights
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OFFSHORE WAVE CONDITION INPUT TO MODEL:

Wave Height = 6 feet
Wave Period = 8 seconds 5 6
Wave Direction = East-East Northeast
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Mavericks, California. Shore and Beach, April, 66(2), 26-30.




BATHTUB BEACH PARK, MARTIN COUNTY

Fringed reef
environments

= |G wave
component of
runup more
dominant

= Potential for IG
wave
resonance/
amplification
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DELRAY BEACH, | i
PALM BEACH ; TF
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/SUMMARY \

1. Simplistic explanation of |G waves and generation mechanisms
- Waves with periods between 30 seconds and 5 minutes

2. Discussion of numerical modeling results from SW France coastline
- Offshore bathymetry highly influences |G wave hotspots

3. Applicability to Florida’s Atlantic coastline
- |G waves are everywhere
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Questions?

Contact Information:

Dylan Nestler, P.E
[: Coastal Engineer
DASTAL Coastal Protection Engineering

F ROTECTION dnestler@coastalprotectioneng.com
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Albada et al. 2007. https://fsbpa.com/07Proceedings/05Albada2007.pdf



