

Western Louisiana Coast **LAND LOSS LAND GAIN**

Have you heard this story?

- Coastal Louisiana's fragile wetlands are disappearing
- Massive flood protection levee construction has diminished healthy wetland growth
- Development & agriculture add to wetland deterioration
- Barrier islands disintegrate, further impacting wetlands

As the story worsens...

- Canals for oil & gas production have only exacerbated this problem
- Louisiana's delta wetlands are left exposed to
 - owave action,
 - ostorm surge,
 - osalinity intrusion,
 - otidal currents,
 - odetrimental sediment transport

An unexpected turn?

- These all combine to accelerate wetlands loss
- Wait, what is all this wetland growth doing on our wetland loss map?
- Wax Lake Outlet
 - **OWax Lake Delta**
 - Atchafalaya River Delta

"We've been working on this for a long time, & we haven't come up with a better way to do it, better than what nature figured out billions of years ago." -Dr. Paul Kemp, Coastal Oceanographer & Geologist **Louisiana State University Wax Lake Outlet: Just about the Greenest Accidental Delta You Ever Saw**

"Currently, 30 to 40% of all dredged material from federal navigation channels is used beneficially for such purposes as nourishing beaches & enhancing wetland habitats." Carol C. Coleman, USACE-ERDC

public affairs specialist

Ongoing R&D is Discovering New

Ways to use Dredged Sediments

Hydrodynamic Dredging in the US - Challenges & Opportunities

February 02, 2023

Outline

- Wax Lake Outlet
- Hydrodynamic Dredging
 - Water Injection Dredge (WID)
 - Environmental Considerations
 - Economic Benefits

Case Studies

- North Carolina State Ports Authority (NCSPA)
- Virginia Port Authority (VPA)
- North Carolina Department of Transportation (NCDOT) Ferry Division

Summary

Comparison of Dredging Techniques

Hydraulic & Mechanical Dredging are traditional dredging techniques that hydraulically or mechanically remove sediments from a waterbody

In comparison, all *Hydrodynamic Dredging* techniques horizontally transport the dredged material, entirely within the water column

All *Hydraulic & Mechanical Dredged* sediments are *transported* using buckets,
pipeline, hoppers, barges, etc.

All *Hydrodynamic Dredging* sediments *flow through the water* from the dredge area to the final disposal area

Water Injection Dredging

WID pumps water into channel bottom sediments at relatively *high-volume & low pressure*

WID allows sediments to flow horizontally out of a waterbody, while the *fluidized sediment*layer remains close to the bottom

The objective is to remove the material from a selected area by taking advantage of the near-bottom *density current*

- Tides
- Currents
- Gravity
- Other Hydrodynamic Forces

Environmental Considerations

WID cannot be used where unacceptable environmental impacts may occur

- Contaminated resuspension
- Suspended solids effects
- Site specific impacts

Sediment transport modelling is required to determine the destination of *dredged sediments*

WID has the **ecological advantage** as it does not disturb the sediment distribution & waterbody balance

All **WID** sediments **must be analyzed** & most sediments will be
appropriate for the dredging
technique

Parameters that influence **WID** production include:

- Soil characteristics
- Site bathymetry & geometry
- Hydrodynamic conditions
- Geographic location
- Type & level of contamination
- Regulatory agency acceptance

FDR

Economic Benefits

Traditionally dredged sediments require more costly transportation, using pipelines, buckets, hoppers, barges, etc.

In comparison, for all *hydrodynamic dredging* (including WID) the dredged material is transported *entirely within the water column*

Traditional dredged sediments require acquiring placement or disposal areas for the storage

In comparison, for all *hydrodynamic dredging* (including WID) techniques the sediments *flow through water*

Traditional dredging costs:

- Mobilization/Demobilization
- Transportation & Storage
- Complex dredge plant O & M
- Lower production rates

Optimized hydrodynamic dredging

- Rapidly moved on short notice
- Don't require disposal facilities
- Reduced dredge plant O & M
- Higher production rates

Water Injection Dredge (WID)

Design,
Permitting, &
Purchase

USACE-ERDC Monitoring Event

- Since June 2021
 - Dredged ~580,000 cubic yards (CY)
 - Approximately 195 hours
 - Production rate of ~3,000 CY/hr.
- NCSPA costs include:
 - Annual depreciation of the vessel
 - Annual insurance costs
 - Dredging operations costs
 - Fuel
 - Other O&M costs (repairs, parts, contract services, expendables, training not related to a dredging event, etc.)
 - Pre- & post-dredging surveying
- Estimated \$1M/YR in cost savings

Vessel	
Length Overall (ft)	88
Beam Overall (ft)	28.75
Draft (ft)	3
Max Dredging Depth (ft)	55
Sailing Speed (kts)	6
Dredge System	
Dredging Speed (kts)	1.5
WID Manifold Width (ft)	27.5
Nozzles (Number)	41
Nozzle Diameter I.D (in)	2
Max Rated Pump Pressure (PSI)	35
Max Rated Flow Rate (gal/min)	20,000
Production – January 2022	
Volume Dredged (cu yd)	70,990
Dredging Time (Hrs)	29
Production Rate (cu yd/hr)	2,448
Production - Oct/Nov 2021	
Volume Dredged (cu yd)	113,646
Dredging Time (Hrs)	32.5
Production Rate (cu yd/hr)	3,497

Osprey with jet bar deployed

Osprey with jet bar above water

WID Channel
Dredging above
the Chesapeake
Bay Bridge-Tunnel

Virginia Port Authority (VPA)

Chesapeake Bay Bridge-Tunnel

USACE District:

Norfolk - NAO

USACE Channel:

Al

Channel ID:

All

VPA FINAL SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT (SEA)

- Norfolk Harbor Navigation Improvements Project, Chesapeake Bay Bridge-Tunnel (CBBT)
- Preconstruction engineering & design efforts raised concerns about risks to the tunnel structure
- WID chosen alternative dredging method
- US Army Corps of Engineers Norfolk District (USACE-NOA) was responsible for preparing the SEA
- Non-federal sponsor (VPA) providing input on the technical aspects of the proposed project

WID Ferry Terminals Demonstration – Southport to Fort Fisher

NCDOT Ferry Division

FDR

NCDOT Ferry Division

- NCDOT Ferry Division: <u>www.ncdot.gov/travel-maps/ferry-tickets-services.aspx</u>
- Operates the second-largest state-owned ferry system in the US
- Transport more than 1.1 million vehicles & 2.5 million passengers annually
- 21 ferry vessels serve 7 routes
- Operate over 200 trips daily

FDR

NCDOT Ferry Terminals - Southport

- Annually dredge ferry basin
- Place sediment in 4 adjacent DMMAs
- Sediment trucked off
- In the past, shoaling has caused route termination during low tides

FD3

NCDOT Ferry Terminals – Fort Fisher

- Annually dredge ferry basin
- Place sediment in adjacent DMMA
- Sediment trucked off
- In the past, shoaling has caused route termination during low tides

Summary - Takeaways

The key benefit of WID is that horizontal *transport* of the dredged material takes place *entirely within the water column*

Worldwide WID is a *rapidly* evolving field & will require educating regulatory agencies & the public

Traditional dredging is often as much about transporting & handling water as it is about the removed sediment

Four-part formula for WID success:

- Site conditions (sediment & hydrodynamic forces)
- Technical feasibility
- Legal & regulatory concerns
- Economics (benefits/costs ratio vs cost only)

The WID technique dilutes & fluidizes the sediments, creating a near-bottom density current with higher density than the surrounding water

Joe Wagner, PE, D.NE, BCEE Senior Dredging Engineer Ports & Harbors

76 S. Laura Street, Suite 1600 Jacksonville, FL 32202 904.210.4078 joe.wagner@hdrinc.com

hdrinc.com

© 2023 HDR, all rights reserved.