

→ FSBPA Technical Conference

Saint Augustine, FL 08 February 2024

Curry Hammock Park Tidal Restoration

Presented By: Nicholas Bragaia, PE, ENV SP Maritime and Coastal Engineer GHD

Agenda

- Project Background and Team
- Hydrodynamic Model Development
 - Model Domain
 - Boundary Conditions and Forcing
 - Calibration
- Selection of Design Neap Period
- Tidal Improvement Scenario Results
 - Tidal Flushing Analysis
 - Sedimentation
 - Structure flushing analysis
 - Sedimentation patterns

Project Background

- Curry Hammock State Park is located along U.S. Highway 1/Overseas Highway in Marathon, FL (Monroe County).
- During the development of this area the historical tidal connections between the FL Bay and the Atlantic Ocean were filled.
- The tidal restoration aims to re-establish the surface water connection to improve circulation and flushing.

Project Team

Florida Department of Environmental Protection (FDEP) – Project Sponsor

Gresham Smith Prime, Roadway/MOT, Structural

ESA Environmental, Permitting

GHD Hydraulics

Terracon Geotech

GPI Survey

Structural

DRMP SUE

Model Domain

- Regional domain covering
 Florida-Bahamas-Cuba area
- Unstructured (triangular) mesh containing 66,850 nodes and 119,614 elements

Model Domain - Local

Boundary Conditions

- Boundary Conditions:
 - Water Current Velocities and Water Surface Elevations
 - Combined Global HYCOM + DHI Tidal model
- Meteorological Forcing
 - Spatially and Temporally Varying Wind Speeds
 - ERA 5 Global Wind Fields

Model Calibration

- Three (3) Water Surface Elevation (WSE) stations
- One (1) Current Velocity station
- Calibration period:
 - March/April 2013 to align with current velocity data timeframe

Model Calibration - WSE

Station	MAE (m)	IOA (-)		
Key Colony Beach	0.08	0.94		
Key West	0.10	0.88		
Vaca Key	0.12	0.50		

MAE: Mean Absolute Error.

IOA: Indices of Agreement. Values >0.5 indicate good model calibration, values close to 1 represent excellent calibration per Wilmott et al. (1985)

Model Calibration - Currents

Station	MAE (m/s)	IOA (-)		
Moser Channel	0.17	0.70		

MAE: Mean Absolute Error.

IOA: Indices of Agreement. Values >0.5 indicate good model calibration, values close to 1 represent excellent calibration per Wilmott et al. (1985)

Selection of Design Neap Period

Rank	Date	Tidal Range (m)		
1	11/15/10	0.34		
2	1/3/20	0.346		
3	5/7/10	0.349		
4	12/5/19	0.351		
5	5/8/10	0.353		
6	12/13/10	0.357		
7	11/16/14	0.358		
8	5/8/14	0.359		
9	5/29/23	0.359		
10	5/28/23	0.36		

Tidal Improvement Scenarios

Figure 2 – Proposed Culvert Locations

<u>Scenario 1</u>: 10' x 10' **Triple** Box Culvert at Both East & West Locations

<u>Scenario 2</u>: 10' x 10' **Double** Box Culvert at Both East & West Locations

Tidal Improvement Scenarios

Scenario 3: 10' x 10' Triple Box Culvert at West Location & 10' x 10' Double Box Culvert at East Location

Scenario 4: 10' x 8' Triple Box Culvert at West Location & 10' x 8' Double Box Culvert at East Location

Scenario 5: 10' x 6' Triple Box Culvert at West Location & 10' x 6' Double Box Culvert at East Location

Tidal Improvement Scenarios

Flushing Analysis

- Initial concentrations of 1000 (nondimensional units) specific in each waterbody
- 96-hour (4 day) simulation around maximum neap tide conditions
- Time required to diminish concentration by 90% quantified

Tidal Improvement

Flushing Analysis Results

Scenario 1: Triple 10' x 10' box culverts

Scenario	Area	Time to Dissipate 90% of Concentration (hrs.)	Description	
Baseline	Western	11 hrs.	Existing Conditions (No	
Ducomito	Eastern	27 hrs.	Culverts)	
Scopario 1	Western	7.75 hrs. (30% Reduction in Flush Time)	Triple 10' x 10' box outparts	
Scenario 1	Eastern	13.25 hrs. (51% Reduction in Flush Time)	Triple 10 x 10 box cuivens	
Scopario 2	Western	9.5 hrs. (14% Reduction in Flush Time)	Double 10' x 10' box	
Scenario 2	Eastern	15.75 hrs. (42% Reduction in Flush Time)	culverts	
Soonaria 2	Western	7.75 hrs. (30% Reduction in Flush Time)	Triple 10' x 10' box culverts	
Scenario 5	Eastern	16.25 hrs. (40% Reduction in Flush Time)	Double 10' x 10' box culverts	
Scepario 4	Western	7.5 hrs. (32% Reduction in Flush Time)	Triple 10' x 8' box culverts	
Scenario 4	Eastern	16.25 hrs. (40% Reduction in Flush Time)	Double 10' x 8' box culverts	
Scenaria 5	Western	8.0 hrs. (27% Reduction in Flush Time)	Triple 10' x 6' box culverts	
Scenario 5	Eastern	16.25 hrs. (40% Reduction in Flush Time)	Double 10' x 6' box culverts	

Tidal Improvement

Structure Self-Flushing Hydraulics

- Impoundment of sediment and other materials can decrease hydraulic performance and lead to increased maintenance costs.
- Shear stress trough structures is calculated and compared to recommended values from the literature to evaluate self-flushing capability.
- Shear stress values between 3-4 N/m² are generally sufficient to clear storm sewers per (Yao, 1974).

Scenario	Western Culvert Shear Stress Percentiles (N/m²)			Eastern Culvert Shear Stress Percentiles (N/m²)		
	25 th	50 th	95 th	25 th	50 th	95 th
1	3.91	9.62	24.10	2.17	4.94	11.31
2	5.09	11.90	25.60	2.66	5.73	12.24
3	4.96	11.43	35.09	2.94	6.22	12.59
4	5.01	12.12	35.03	2.94	6.22	12.59
5	4.96	11.39	35.09	2.94	6.23	12.61

Tidal Improvement

Sedimentation Patterns

- Shear stresses induced by each alternative were developed.
- Shear stresses were related to sediment classifications based on critical bed shear stress values (see USGS Scientific Investigations Report 2008-5093 for more details).

Particle Classification Name	ticle Classification Name Ranges of Particle Diameters (mm)		Critical Bed Shear Stress (Tc) (N/m²)	
Very Coarse Sand	1.0 - 2.0	0.029 - 0.039	0.47 - 1.30	
Coarse Sand	0.5 – 1.0	0.033 - 0.029	0.27 – 0.47	
Medium Sand	0.25 - 0.50	0.048 - 0.033	0.194 – 0.27	
Fine Sand	0.125 – 0.25	0.072 - 0.048	0.145 – 0.194	
Very Fine Sand	0.0625 - 0.125	0.109 - 0.072	0.110 - 0.145	
Coarse Silt	0.0310 - 0.0625	0.165 - 0.109	0.0826 - 0.110	
Medium Silt	0.0156 - 0.0310	0.25 - 0 .165	0.0630 - 0.0826	
Fine Silt	0.0078 - 0.0156	0.3 - 0.25	0.0378 - 0.0630	

Conclusion and Path Forward

• Scenario 4 is recommended as the most advantageous alternative and should be progresses through the design phase. This alternative is summarized below:

Scenario	Number o Struc	Number of Culvert Structures		Length of Culvert Structures (ft)		Structure Dimensions (Width x Height)		Inverts (ft, NAVD88)	
#	East	West	East	West	East	West	East	West	
4	2	3	260	200	10'x8'	10'x8'	-3.4	-4.2	

- Anticipated Project Schedule/Milestones:
 - 30% Design Submitted 01/31/2023
 - 60% Design 06/30/2024
 - Permitting % Final Design 02/28/2025
 - Construction Dependent on acquiring funding.

***** Thank You

