A Monte Carlo Simulation Model for Beach Fill Optimization

Chuck Mesa
U.S. Army Corps of Engineers
Los Angeles District
Purpose

• An integrated coastal engineering – economics analytical framework for evaluating the life-cycle physical performance and economic costs of beach nourishment projects along sandy shores
San Clemente, CA
San Clemente, CA
Previous Corps R/U Models

- Storm Damage Model – Jacksonville
- GRANDUC – Wilmington
- “Becky” – Corps R&D
WENDY

- Wave-induced
- Economic
- Net
- Damage
- Yields
WENDY

- Excel Spreadsheet
- @Risk – Monte Carlo Simulation Generator
- Inputs: Engineering & Economic
- Outputs: Economic
Engineering Inputs

- Beach Morphology
- Structure Information
- Water Level (tide+surge+SLC)
- Wave Info (height, period)
- Shoreline Erosion Rates
Engineering Inputs

- Lognorm(0.74448, 0.38759) Shift=+0.13308
 - X <= 0.000: 0.0%
 - X <= 2.600: 99.6%

- Triang(-0.46, -0.21, 0.38)
 - X <= -0.460: 0.0%
 - X <= 0.380: 100.0%

Significant Wave Height, m

Probability Density

Without-Project Long Term Erosion Rate, m/yr

Probability Density
Economic Inputs

- Real Estate Valuations
- Costs
- Recreation
- Interest Rates

- Unit Prices
Model Logic

GENERAL MODEL FLOW

Simulation Control: First model simulation is WITHOUT-project. Model simulations 2-N are for each project alternative. Simulation controlled in FXN using macro: Alternatives.

Engineering Processes

Economic Processes

Economic Summary: First model simulation computes Total WITHOUT-project damages and recreational value. Output written internally to model (INPUT_ECON) becomes input for WITH-project analysis. WITH-project costs calculated. No benefits and/or B/C ratios computed.
Structure Damages
Railroad Damages
Model

A	B	C	D	E	F	G	H	I	J	K	L	M	
6													
7	Year	Year	Year										
9	1	2	3	4	5	6	7	8	9	10	11		
10	Long Term Erosion	-0.1	-1.1	0.8	0.1	0.1	0.1	-0.7	-0.2	0.2	-0.4	0.4	
11	Storm Erosion	5											
12	Period	13											
13	Water Level	6.3											
14	Beach Slope	7											
15	Lo	866											
16	Hs	9.0											
17	SurfSimBeach	1.40											
18	Runup 2% Beach	16.9											
19	L @ Revet	185											
20	H @ Revet	3.8											
21	SurfSimRevet	4.67											
22	Runup1/3 Revet	11.1											
23	MF	1.00											
24	H.L	0.020											
25	Runup Revet 2% Hughes	17.8											
26	Sea Level Rise (cum)												

Coastal Engineering Input and Parameter Calculations

Define Distribution for C12

ROUND(RiskLogistic(13.2336, 1.3463), RiskTruncate(10, 20), 0)

Logistic(13.2336, 1.3463)

Truncate(10, 20)
Project

- 56 Alternatives
 - 4 base beach widths
 - 14 sacrificial beach widths

- <1 sec per simulation
- <1000 simulations to achieve numerical stability
Economic Outputs

Benefit - Cost Ratio

Mean = 1.69958

X <= 0.74 5%

X <= 2.82 95%

% Occurrence

BC Ratio

0 0.1 0.2 0.3 0.4 0.5 0.6

0 1 2 3 4 5 6
Economic Outputs

Distribution for Annual Net Benefits

Mean = 751541.9

X <= -318513.19
5%

X <= 1933586.56
95%

Annual Net Benefits ($, Millions)

% Occurrence

Mean = 751541.9
Project Results

[Graph showing the relationship between sacrificial beach width (m) and annual net benefits ($). The graph indicates different net benefits based on the width of the sacrificial beach, with symbols representing different widths: 0 m, 10 m, 20 m, and 30 m.]
Conclusion

- Monte Carlo Simulation Model
- Engineering – Economics
- Simple or Complex
- Customizable
- Fear not - you can do this too
Post Script

- Beach-fx, 2007