Ebb Delta Development at a “New” Old Inlet, Shark River Inlet, NJ

Tanya Beck, Nick Kraus
Coastal and Hydraulics Laboratory
Engineer Research and Development Center

23rd Annual National Conference on Beach Preservation Technology
February 3-5, 2010
Crowne Plaza Melbourne Oceanfront Indialantic, FL
Introduction

- Federally maintained; southernmost inlet in NY District
- Northernmost inlet on NJ coast; Atlantic Highland region (bluffs, historically steep nearshore)
- Small estuary; narrow inlet, small width:depth ratio
- Densely structured coast
 - Short north jetty with spur; longer south jetty
 - Groins recently notched (2000)
What is Unique about Shark River Inlet?

- Deep-draft channel maintained to 18 ft MLW, 150 ft across – width/depth = 17
- Historically efficient with little dredging necessary (every 7-10 years)
- 1997 & 2000 Beach Erosion Control Project (nourishment) added 2 million cy to north and to the south of the inlet
 - Nourished a severely sediment-starved system
 - District planned for increase of dredging interval of every 2-3 years
- CIRP also anticipated the increase in dredging, but did not anticipate the formation of an ebb shoal
Littoral Processes

- Angas (1960)
 - Up-drift (south) jetty impoundment
 - 1958-59 Sand Bypassing Project
 - 137,000 cy of the 225,000 cy projected in the first winter
- Others: USACE 1954, Caldwell 1956, Johnson 1956
- USACE NY District (2006)
 - 200,000 cy/year - net potential transport to north
 - 910,000 cy/year - potential gross transport
- Beck & Kraus (2009)
 - 235,000 cy/year – average net potential transport to north
Dredging History

- NY District increases condition survey interval following shoaling reports around north and south jetty tips

<table>
<thead>
<tr>
<th>Date</th>
<th>Survey Type</th>
<th>Date</th>
<th>Survey Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Jan-1995</td>
<td>Condition</td>
<td>28-Mar-2007</td>
<td>Condition</td>
</tr>
<tr>
<td>6-Jan-1998</td>
<td>Condition</td>
<td>30-Aug-2007</td>
<td>Before Dredge</td>
</tr>
<tr>
<td>6-May-1999</td>
<td>Condition</td>
<td>4-Jan-2008</td>
<td>After Dredge</td>
</tr>
<tr>
<td>16-Apr-2002</td>
<td>Condition</td>
<td>9-Jun-2008</td>
<td>After Dredge</td>
</tr>
<tr>
<td>6-Dec-2002</td>
<td>Before Dredge</td>
<td>31-Oct-2008</td>
<td>After Dredge</td>
</tr>
<tr>
<td>18-Jan-2003</td>
<td>After Dredge</td>
<td>8-Dec-2008</td>
<td>Before Dredge</td>
</tr>
<tr>
<td>7-Jul-2003</td>
<td>Condition</td>
<td>6-Jan-2009</td>
<td>After Dredge</td>
</tr>
<tr>
<td>7-Aug-2003</td>
<td>After Dredge</td>
<td>15-Apr-2009</td>
<td>Before Dredge</td>
</tr>
<tr>
<td>28-Apr-2004</td>
<td>Condition</td>
<td>1-May-2009</td>
<td>After Dredge</td>
</tr>
<tr>
<td>10-Jun-2005</td>
<td>Condition</td>
<td>20-Aug-2009</td>
<td>Before Dredge</td>
</tr>
<tr>
<td>23-Dec-2005</td>
<td>After Dredge</td>
<td>10-Dec-2009</td>
<td>After Dredge</td>
</tr>
<tr>
<td>23-May-2006</td>
<td>Condition</td>
<td>6-Jan-2010</td>
<td>After Dredge</td>
</tr>
<tr>
<td>27-Nov-2006</td>
<td>Condition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Volume is largely being controlled by frequent unanticipated dredging

![Graph showing volume change over time]
1995 & 2000 Ebb Delta Formation

Condition Survey
5 April 2000

Coastal Inlets Research Program
2002 & 2003 Ebb Delta Formation

After Dredge Survey
18 January 2003
2003 & 2006 Ebb Delta Formation

Condition Survey
23 May 2006

Coastal Inlets Research Program
Dredging Events & Volume Post 1999

Surveyed Channel Volume (Post 1999)

Dredged
2008 & 2009 Ebb Delta Formation

Before Dredge Survey
15 April 2009

Elevation, MLW (m)
-1 - 0.5 -2 - 1.5 -3 - 2.5 -4 - 3.5 -5 - 4.5 -6 - 5.5 -7 - 6.5 -8 - 7.5 -9 - 8.5 -10 - 9.5
-1.5 - 1 -2.5 - 2 -3.5 - 3 -4.5 - 4 -5.5 - 5 -6.5 - 6 -7.5 - 7 -8.5 - 8 -9.5 - 9 -10.5 - 10
2010 – Post Dredging

After Dredge Survey
January 2010

Elevation, MLW (m)
-1.0 - 0.5
-2.0 - 1.5
-3.0 - 2.5
-4.0 - 3.5
-5.0 - 4.5
-6.0 - 5.5
-7.0 - 6.5
-8.0 - 7.5
-9.0 - 8.5
-10.0 - 9.5
-10.5 - 10.0

NY District Survey

Photo: October 2006

Coastal Inlets Research Program
January 2009 & 2010 – After Dredging Survey

NY District Survey

Coastal Inlets Research Program
Coastal Modeling System (CMS)

- Finite Volume Method; explicit (HPC) or implicit (PC)
- Inline code: flow, waves, and sediment in a single program
- Fully unstructured telescoping (quadtree) mesh
 - Flexible
 - Computationally efficient
 - Backward compatible with previous CMS grids
- 10-30 times for faster than the explicit version of CMS-Flow
 - Typical speed - 1 year morphology change calculated in 1 day
- Robust, reliable
 - 5-30 min time step of for tidal circulation with waves
 - Wetting and drying
- Several choices for sediment transport rate formulas
Shark River Inlet Simulation

- CMS – Implicit Solution for Morphology Change
 - Short term to calibrate to dredging data (shorter cycle of 4-6 months)
 - Long term to test alternatives
 - General morphology characteristics: generate ebb delta, jetty-tip shoaling under dominant wave pattern
 - Engineering alternatives: dredging configuration (widen channel); jetty extension
 - Sediment Grain Size (D_{50}) – 0.20 to 0.30 mm
 - Variable D_{50}
 - Choose 0.26 mm for constant grain size (Kraus and Gravens, 1988)
 - Use Default Transport Coefficients
 - Applied Non-Equilibrium Transport Procedure
Defining the Modeling Domain

- Small estuary; Covers ~10 km of coastline
 - Resolve groin “circulation cells”
 - Lateral boundaries at relatively unstructured stretch

- Channels accurately represented
 - At least 10-15 cells across inlet
 - Federally maintained entrance and south channel (15 years of data)

- Ocean boundary
 - 3 or 4 times the ebb jet distance
 - Resolve the shallow transverse shoals; not too shallow on the edge
Results: CMS – Calculated Channel & Longshore Current

Bathymetry (m):
- 2.0
- 1.6
- 1.2
- 0.8
- 0.4
- 0.0

Current Velocity:
- 2.00 m/s
- 0.00 m/s
Selected Alternatives

Existing Condition – Jan 2009 (Post-dredging)

Alternative 1 - 30 m Channel Wideners

Alternative 2 - 75 m Jetty Extension

Additional 30 m each
Existing Condition (Jan 09 Post-Dredging)

1 Month 4 Months 7 Months 9 Months 1 Year

Consistent with volume removed during the next dredging (~10k m³)
Channel Infilling

Existing Condition
January 2009
(Post-dredging)

Alternative 1 - 30 m Channel Wideners

Alternative 2 - 75 m Jetty Extension

Coastal Inlets Research Program
Summary

- CMS calculations of circulation patterns and magnitudes agree with measurements of current and water level
- Morphology change agrees with expected trends
 - Jetty tip shoals; ebb delta shape (wave-dominated, Atlantic coast type); dominant shoaling along the south jetty
- Short-term simulations produce sedimentation volume within order of magnitude (uncertainty in wave input)
- NET captured channel infilling and development of shallow south jetty tip shoal
- 1-year simulation takes 30 hr to complete on a PC
- Next steps:
 - Engineering options (jetty modification, orientation change)
 - Nourishment impact
 - Long-term (decade) calculations
Thank You!

Any Questions?
Waves

- NOAA Buoy
- Wave Information Study (WIS)

Wind (Sandy Hook)

Height

Period

Coastal Inlets Research Program
Tide

- Forcing data from Sandy Hook gauge
 - Ocean gauge (located on pier)
- Belmar tide gauge (bay)
 - Tidal benchmark
 - Field measurements set to this gauge

Water Level Variation, m MSL

Date, August 2009

- Ocean
- Measured (Bay)
- Calculated (Bay)
Current Velocity

![Graph showing current velocity over time with annotations for Ebbing and Flooding phases.](image)

- Calculated Velocity - CS1
- Measured Velocity - CS1
- Calculated Velocity - CS2
- Measured Velocity - CS2
- Calculated Velocity - CS3
- Measured Velocity - CS3

Time, LDT 20 August 2009